United States Patent

US009477548B2

(12) (10) Patent No.: US 9,477,548 B2
Hoekstra et al. 45) Date of Patent: Oct. 25,2016
(54) ERROR REPAIR LOCATION CACHE 2004/0218440 Al* 11/2004 Kumar G11§36§/92/ (l)g
(71) Applicant: Freescale Semiconductor Inc., Austin, 2009/0055680 AL* 22009 Honda ..o GOGK 171{}‘?56§
TX (US) 2010/0095149 AL* 42010 Lee oooivcrrrrnen G11C 29/765
714/6.13
(72) Inventors: George P. Hoekstra, Austin, TX (US); 2010/0241932 Al* 9/2010 Sakaue ... GO6F ; }21/(7)51;46‘
Ravindraraj Ramaraju, Round Rock, 2012/0124294 AL* 5/2012 AtKiSSOn ...ooco... GOGF 11/108
TX (US) 711/135
2015/0154111 Al* 6/2015 D’Abreuc.c...... GOG6F 3/06
(73) Assignee: Freescale Semiconductor, Inc., Austin, 714/6.11
TX (US) 2015/0255176 Al* 9/2015 Hyder G11C 29/4401
714/723
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 168 days. John Wuu et al, “The Asynchronous 24MB On-chip Level-3 Cache
for a Dual-Core Itanium-Family Processor,” IEEE International
(21) Appl. No.: 14/450,168 Solid-State Circuits Conference, 2005, Session 26.8, pp. 488-489,
. 618; 3 pages.
(22) Filed: Aug. 1, 2014 Yu Cai et al, “Error Patterns in MLC NAND Flash Memory:
Measurement, Characterization, and Analysis,” European Design
(65) Prior Publication Data Automation Association, 2012, pp. 521-526; 6 pages.
US 2016/0034344 Al Feb. 4, 2016 * cited by examiner
(D gl;}gléy/oo (2006.01) Primary Examiner — Guerrier Merant
o IGJ086FCiI/10 (2006.01) (57) ABSTRACT
(52) CPC) GOGF 11/1064 (2013.01) A method for repairing a memory includes executing an
5% Field fCl """ . ﬁt """ S) h ’ Error Correction Code (ECC) for a page of the memory. The
(58) CII(:C ¢ b.as? ca 1;)n e;llrc page includes a plurality of bits having an inherent number
g 00111.1 1?a logl sef(s) © y.l " h hist of failed bits equal to or greater than zero. The ECC is
ce application ftle for compiete search hstory. configured to correct a correctable number of failed bits
(56) References Cited from the plurality of bits. A location of a failure prone bit in

U.S. PATENT DOCUMENTS

4,475,194 A * 10/1984 LaVallee G11C 29/76
365/200
5,263,032 A * 11/1993 Porter GO6F 11/106
714/710

8,650,462 B2 2/2014 Litsyn et al.
2004/0003337 Al* 1/2004 Cypher G11C 29/42
714/763

NO

2
T PAGE ADDR
INTAG?

% Iw

38

1S LOCATION
VALID?

the page is determined from a cache in response to the
correctable number of failed bits being less than the inherent
number of failed bits. A state of the failure prone bit is
changed to a new state in response to determining the
location of the failure prone bit. The ECC is executed in
response to the state of the failure prone bit being changed
to the new state.

16 Claims, 5 Drawing Sheets

4
FLIP BIT AND
EXECUTE ECC

40 NO Atlﬂ_1 4%
MARK BLOCK AS MARK BLOCK AS CORRECT CORRECTABLE
FALED FAILED ERRCRS ERRORS?
' 5
DONE)3 (oo -2 UPDATE CACHE |50

(LOCK BIT ADDR)

NO
MARK BLOCK AS
FAILED

/ALIDATE LINE

U.S. Patent Oct. 25, 2016 Sheet 1 of 5 US 9,477,548 B2

)

[ap]

e

N

| O

N
| —
n
Z [
u O
= et
|

2
(@]
=

=

— L0

104

10-3 -

o ~ N
o (=) (=)
-~ -— -~

3LVY HOHY3 LI MVY

US 9,477,548 B2

Sheet 2 of 5

Oct. 25, 2016

U.S. Patent

96~

¢ DId

INIT 3LYANVANI
A INOQ
sy xm%%%s_ (daav Lig ¥207)
o 05~ 3HOV) ALvadn v~ anoa) oe~ noa
(SYOYY3 SHOM3 a31v4 a3Iv4
T19VLOTHI0D 1074400 SV %0079 YV SV %0079 YuviN
- G -
NEED
92331N93x3 ¢arvA (OVLNI
aNv 119 di4 S3A NOILYO01 SI HAAV 39Vd S (V0 OV 9V
ﬂq 82~ 3F18vL3ILvadn
£SHOMY3 SOE
T19YLOTHH0D 1034409
G
9z
"

HAEETRE)E

[44

U.S. Patent Oct. 25, 2016 Sheet 3 of 5

.

US 9,477,548 B2

80+

60
,
A
HT] /
|
.'
70
o
VEMORY 62—
7
647 CAGHE C
74
66-4 ECC c
CALCULATOR

FIG. 3

68

US 9,477,548 B2

Sheet 4 of 5

Oct. 25, 2016

U.S. Patent

0.1 051
861 8cl
4 991 148 o
ek o _| m~ L = 0El
ovLuaay |\ Juvdnoo FLH O-LIH FuvdN0d /~ ovL waav
%l oo oy 9
6
llllllllllllllllll nlllllllllll'llllll —
| ——|" == | [— . — —== T==1.
<l mlm_ uMo01d 9v1 9cl UuMO01d JHOVD 174" 147 UMO01d JHOVD L uMo01d 9Vl m_‘w 1
q N
801 86
o 3 N = -
XOOTAITYA OVLIHOYD g) pp VAV IHOWD p6 V1VO IHOVD g6 OVLIHOVD ¥IOTAITVA

X30NI FHIVD

om\

US 9,477,548 B2

Sheet 5 of 5

Oct. 25, 2016

U.S. Patent

SLg vl = X3aNI |
981

) SL1g ¥} = X3aNI TUYdNOD LI £ = OVL
28 v8l 6Lzl
3LY1S 18 a3V A A C v
ANNOD HOMYA NOILYOOT LIg 6:Z
_ 'INNODSSID0Y 39Yd 6 el 61 | 0z
e} '‘NOILYD07 Lig &1
V1¥d JHOVD ¥3NI 3HOVD VL JHOVD avA %001
op—"

US 9,477,548 B2

1
ERROR REPAIR LOCATION CACHE

FIELD

This disclosure relates generally to error correction, and
more specifically to improving the capability of Error Cor-
rection Code for correcting errors in a memory.

BACKGROUND

Large capacity memory systems commonly employ error
correction techniques to improve the yield and reliability of
the multitude of memory bits in a memory. One technique
for error correction includes the use of Error Correction
Code (ECC), which uses addition memory bits to represent
an attribute of a memory word that the additional bits are
associated with. For example, the additional bits could
represent the parity of a word or even replicate the entire
word itself. A variety of ECC methodologies exist to strike
a balance between the physical overhead associated with
additional memory bits, the impact on READ latency
required to evaluate whether a memory word has a failure
and the efficacy of the ECC to correct the memory word it
is associated with.

With geometric scaling of memories and the increased use
of multi-level bit (MLB) storage to represent more than one
logical state per bit, memories must rely on the detection of
fewer electrons to detect a stored memory state. With
increased demands for wider operating temperature range
memory reliability is further challenged. In particular with
NAND Flash non-volatile memories, an increase in the
required Program/Erase cycles further limits the reliability
of advanced memory systems.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example
and is not limited by the accompanying figures, in which like
references indicate similar elements. Elements in the figures
are illustrated for simplicity and clarity and have not nec-
essarily been drawn to scale.

FIG. 1 is graphical view of a bit error rate for bits
distributed across a word line.

FIG. 2 is a flowchart representation of a method of
repairing errors with an error repair location cache.

FIG. 3 is a schematic view of a system for repairing errors
with an error repair location cache.

FIG. 4 is a schematic view of a two-way set-associative
cache according to the present disclosure.

FIG. 5 is a schematic view of one way of a cache set.

DETAILED DESCRIPTION

As memory signal margins decrease with geometric scal-
ing of memory and the use of MLB storage, the compen-
satory use of ECC undesirably increases memory area and
system latency, in particular READ latency. Memory errors
are often not random and in many cases are caused by
physical coupling issues or defects. In one example, a
coupling issue exists between a bit line and a noisy conduc-
tor (e.g. a noisy ground conductor for example). The noisy
conductor offsets the signal that the bit line carries between
a bit cell and a sense amplifier, thereby causing a READ
failure. In another example, a manufacturing defect reducing
a dielectric spacing between conductors, thereby increasing
the coupling between the conductors beyond design limits.

10

15

20

25

30

35

40

45

50

55

60

65

2

In another example, bit cells on the edges of a memory array
are prone to failure due to process micro-loading effects
caused by etching.

Advantageously, embodiments of systems and methods
described herein detect error prone locations and extend the
efficacy of ECC by flipping the state of a failure prone bit
when the number of detected bit errors exceeds the capa-
bility of the ECC (e.g. when the ECC “saturates™). Princi-
pally, an aspect of the disclosed concept stores failure
locations of previously failed bits that were corrected by
ECC and establishes a metric (e.g. a “location ratio”) that
defines the previously failed location that is most likely to
reoccur. When a subsequent execution of ECC saturates
(because the number of failed bits exceeds the capability of
the ECC as implemented), a mechanism is provided to flip
the failed bit with the highest location ratio, and the ECC is
executed once again. This increases the probability of a
successful ECC execution and improves the yield and reli-
ability (amongst other advantages) without resorting to
increasing memory area or latency with more complicated
ECC schemes. The failure data collected also provides
valuable guidance for manufacturing process monitoring,
yield enhancement and optimization of wear leveling.

FIG. 1 shows a graph 10 of a Raw Bit Error Rate, (prior
to ECC correction) for two blocks of series connected cells
located along 32 adjacent word lines. The graph 10 shows
one example of an error trend that is not random. The Word
Line Index spans from 0 to 31, corresponding to the 32
physical locations within a block. There are blocks of 32
cells shown where each bit cell stores two bits worth of data
in each bit cell location. The odd blocks 12, 14, and the even
blocks 16 and 18 are shown with a peak in the error rate near
the extremities of the block of cells attached to the word line
(e.g. near index 1 and index 30). These peaks also correlate
to fail prone locations that will be determined by successful
ECC execution and stored in the event that a future ECC
execution saturates.

FIG. 2 is a flowchart 20 of a method of repairing memory
errors according to one embodiment of the present disclo-
sure. An inherent number of failed bits exist in a memory,
some or all of which can be corrected by executing the ECC.
The term “inherent number of failed bits” means the number
of failed bits determined when reading the memory prior to
executing ECC. Failed bits can result from manufacturing
defects or soft errors for example. In some embodiments, the
inherent number of failed bits is zero. At step 22 an ECC is
executed. In one embodiment, the ECC uses a Hamming
code implemented with additional memory bits and is
applied to a page of a memory. A page is a group of
consecutive memory bits. There are multiple pages in a
block, with each page having its own memory bits to
implement the ECC. A block is a larger group of memory
bits, typically erased concurrently. Memory arrays typically
have multiple blocks.

At step 24, if the ECC is able to correct all of the detected
failed bits (e.g. “errors”), the errors are then corrected at step
26. After correcting the errors at step 26, an error repair
location cache (e.g. “cache”) is updated at step 28. Specifi-
cally, a page address of the page with the failed bit, the
location of the corrected (e.g. “repaired”) bit, which had
previously failed, and the failed state is stored. A valid bit is
also set to indicate the newly stored location data is valid.
After the cache is updated at step 28, a step 30 indicates that
the error repair sequence is done. In one embodiment, a flag
is set at step 30 to inform a controller to return to an idle state

US 9,477,548 B2

3

awaiting the next request to execute the ECC. In another
embodiment, step 30 informs a user of a system that step 28
has been completed.

If it is determined at step 24, that the ECC is unable to
correct all of the detected failed bits, then step 32 determines
if the address of the page (e.g. “Page Addr”), for which ECC
is being performed, is in the cache Tag. Specifically, the page
address is matched against one or more tags in a cache to
determine an address match. In one embodiment, a block
address is also used to index or select at least one cache set
corresponding to the block. The cache set has at least one tag
with a page address and at least one cache data with a failure
bit location.

If the page address is not matched to a tag in the cache
then the block that includes the respective page is marked as
“Failed” at step 34. Similar to step 30, the error repair
sequence terminates at step 36. A failed block contains a
page that is neither correctable by the ECC designed into the
page or by subsequently executing ECC with a previously
failed bit flipped. Thus, the failed block is generally an
indication of a failure mechanism that affects many bits (e.g.
a large cluster defect).

If the page address is matched to a tag at step 32, then a
valid bit associated with the matched tag is verified as valid.
A valid bit ensures that the matched tag is a result of a tag
being validly written to the cache and not a coincidental
match from random data or from previous unrelated opera-
tions. If the valid bit is not valid, then the block is marked
as Failed at step 40 and subsequently the error repair
sequence terminates at step 42, similar to step 30. If the valid
bit is valid, then step 44 is executed.

At step 44 a previously failed bit, whose location is both
valid and is from the same page that failed, is flipped (e.g.
the state of the bit is changed from a logical ‘0” to a logical
“17, or from a logical “1” to a logical “0”) and the ECC is
executed with the flipped bit. In some embodiments, the
error repair location cache is fully associative and only
contains one location for each tag matching the page address
at step 32. In other embodiments, the error repair location
cache is a multi-way set associative cache (e.g. 2-way or
4-way). Embodiments that use a multi-way set associative
cache may store multiple failed locations with the same tag
value (e.g. same page in the same block) and use a metric
called a “location ratio” to define which of the multiple
failed locations should be chosen to be flipped.

For embodiments with a multi-way set associative cache,
in addition to storing a block address as an index to select
cache sets, the page address in a tag, failed location, the
failed state and a valid bit, the cache also stores a location
error count and a page access count. The location error count
defines the number of times the ECC has corrected the same
memory state at the same failed bit location. The page access
count defines the number of times a page has been accessed.
A location ratio is defined by the ratio of the location error
count divided by the page access count. A high number for
a location ratio indicates a failed memory bit that is more
prone to failure than a failed memory bit with a low number
for a location ratio.

If more errors occur in a page than there are ways in the
cache, the “cache line” with the lowest location ratio is
evicted and freed to store information related to the new
error. Specifically, the valid bit is reset to false so that the
tag, the failed location, the location error count, the page
access count, and the failed state can be overwritten. In
another embodiment, a lock bit is also stored in the cache
line. The lock bit associated with a failed bit is set to true
when, after executing the ECC with the failed bit flipped, the

10

15

20

25

30

35

40

45

50

55

60

65

4

memory errors in the page are successfully corrected. In
embodiments comprising a lock bit, the cache line will not
be evicted if the lock bit is set to true, even if the cache line
has the lowest location ratio.

After executing the ECC with the failed bit flipped at step
44, step 46 subsequently determines if the memory errors are
correctable. If the errors were correctable then the errors are
corrected at step 48. Following error correction at step 48,
the cache is updated at step 50 by setting the lock bit,
associated with the flipped bit, to true (e.g. the lock bit is in
the same cache line as the location of the failed bit that was
flipped). Subsequently and similarly to step 30, the error
repair sequence terminates at step 50.

If at step 46 it is determined that the memory errors are not
correctable, then at step 54 the block is marked as failed. At
step 56 the cache line is then invalidated by setting the valid
bit to false, thereby freeing the cache line to be written with
data from subsequent memory bit failures. Similar to step
30, the error repair sequence terminates at step 58.

In one embodiment at step 44, the ECC is executed after
the failure prone bit (e.g. the bit with the highest location
ratio) is flipped. In another embodiment, a second ECC is
executed with the failure prone bit flipped (similar to step
44) substantially in parallel with executing the ECC of step
22. A parallel pass execution of the ECC improves system
latency by reducing the time required to correct memory
errors at the expense of duplicating the area required to
evaluate the ECC.

FIG. 3 shows a system 60 for repairing errors with an
error repair location cache. The system includes a Memory
62, a cache 64 and an ECC Calculator 66. In one embodi-
ment, the Memory is a NAND Flash, however other large
capacity memories are envisioned with the scope of this
disclosure, whether volatile or non-volatile. For example,
the concepts disclosed herein are also applicable to DRAM,
MRAM or PRAM memories or other memory types that are
prone to non-random errors. In one embodiment, the Cache
64 is a 2-way set associate cache, although fully associative,
4-way or other multi-way caches are envisioned to take
advantage of the disclosed concepts. In one embodiment, the
ECC Calculator 66 is implemented with a combination of
logic gates. The Memory 62 communicates with a bus 68
through a connection 70. The Cache 64 communicates with
the bus 68 through a connection 72. The ECC Calculator 66
communicates with the bus 68 through a connection 74.

The Memory 62 includes a plurality of Blocks 80 defining
a group of memory bits that are concurrently erasable
through a shared substrate (e.g. “bulk™) connection. Each
Block 80 is further partitioned into a plurality of Pages 82.
Each Page 82 has a plurality of memory words 84 that share
a group of ECC bits 86 that encode at least a portion of the
information contained within the page. In some embodi-
ments, a cluster defect 88 affects a memory word 84 and
thereby results in non-random failure of memory bits that
may be corrected by the concepts disclosed herein.

FIG. 4 shows a 2-way set associative cache 90 according
to an embodiment of the present disclosure. The cache 90
includes at least one Cache Set 92 including two “ways.”
One way of a set includes one entry from a Cache Data 94,
a respective entry from a Cache Tag 96 and respective pair
of Valid/Lock bits 98. A second way of the set includes one
entry from a Cache Data 104, a respective entry from a
Cache Tag 106 and respective pair of Valid/Lock bits 108. A
Cache Index 110 selects one of the sets corresponding to one
of the blocks 80 from FIG. 3. The Cache Data 94 and 104
each hold data related to a respective failed bit, including but
not limited to failure location and failure state. The Cache

US 9,477,548 B2

5

Tag 96 and 106 hold a corresponding page address (e.g. Page
82 from FIG. 3) within which the failed bit resides. The pair
of Valid/Lock bits 98 and 108 are used to indicate whether
the data in the Cache Data 94 and 104 are valid, and whether
they are locked as a result of the data successfully correcting
a saturated ECC condition.

In one example of the operation of the 2-way set asso-
ciative cache 90, the Cache Index 110 selects a Cache Set 92
corresponding to Block n (where “n” is one of the blocks
from the Memory 62 of FIG. 3). The Cache Set 92 includes
a Cache Block n 114, a Tag Block n 116 and a pair of
Valid/Lock bits 118 for one way, and a Cache Block n 124,
a Tag Block n 126 and a pair of Valid/Lock bits 128 for the
second way. An address tag (Addr Tag) 130 is compared
with the output 132 of Tag block n 116 with a comparator
134. If both the comparator output 136 and a corresponding
valid bit 138 from the Valid/Lock bit pair 98 are true (e.g.
both have a logical “1” state or high state) then an AND-gate
140 provides a Hit-0 142 being true. If Hit-0 142 is true, then
the data 144 from the Cache Block n 114 is combined with
an AND-gate 146 to produce a first way output 150.

Similarly, an address tag (Addr Tag) 130 is compared with
the output 152 of Tag block n 126 with a comparator 154. If
both the comparator output 156 and a corresponding valid
bit 158 from the Valid/Lock bit pair 108 are true (e.g. both
have a logical “1” state or high state) then an AND-gate 160
provides a Hit-1 162 being true. If Hit-0 162 is true, then the
data 164 from the Cache Block n 124 is combined with an
AND-gate 166 to produce a second way output 170. The first
way output 150 and the second way output 170 provide data
related to two failed bits within a page 82 that are used to
extend the capability of the ECC bits 86.

FIG. 5 shows an addressing scheme 180 for one way of
the cache set 90. The scheme 180 includes a Cache Index
182, a Cache Tag 184, a Cache Data 186 with a region 188
corresponding to one set, a Valid bit 190 and a Lock bit 192.
With reference to FIG. 3 and FIG. 5, one example embodi-
ment includes 16K Blocks, each Block being similar to
Block 80 and addressed by 14 bits. Each Block 80 has 128
Pages 82 addressed by 7 bits. Each Page 82 includes 4K
bytes addressed by 12 bits. Each byte is addressed by 3 bits.
With reference to FIG. 5, the Cache Index 182 is used to
select one of 16K blocks and thus has 14 bits. Similarly, one
region 188 in the Cache Data 186 corresponding to one of
16K blocks, requires 14 bits to be uniquely addressed. The
Cache Tag 184 includes bits 14 through 20 (e.g. 7 bits
corresponding to 128 pages per block). The Valid bit 190 and
the Lock bit 192 are each single bits. In one embodiment,
each region 188 of the Cache Data 186 includes 15 bits to
identify a failed bit location (e.g. 4K bytes/page addressed
with 12 bits, and 3 bits/byte). The region 188 also includes
5 bits for the page access count, 5 bits for the location error
count and a single bit for the failed bit state. It is envisioned
within the scope of this disclosure that different block and
page sizes are realizable as are different limits for the
location, page access count and location error count.

As will be appreciated, embodiments as disclosed include
at least the following. In one embodiment, a method for
repairing a memory comprises executing an Error Correc-
tion Code (ECC) for a page of the memory. The page
comprises a plurality of bits having an inherent number of
failed bits equal to or greater than zero. The ECC is
configured to correct a correctable number of failed bits
from the plurality of bits. A location of a failure prone bit in
the page is determined from a cache, in response to the
correctable number of failed bits being less than the inherent
number of failed bits. A state of the failure prone bit is

10

15

20

25

30

35

40

45

50

55

60

65

6

changed to a new state, in response to determining the
location of the failure prone bit. The ECC is executed in
response to the state of the failure prone bit being changed
to the new state.

Alternative embodiments of the method for repairing a
memory comprise executing the ECC with the failure prone
bit not changed to the new state, substantially in parallel
with executing a second ECC with the failure prone bit
changed to the new state. The location of the failure prone
bit is stored in the cache in response to executing the ECC
and the correctable number of failed bits is greater than or
equal to the inherent number of failed bits. The location of
the failure prone bit determined from the cache further
comprises matching a page address to one of a plurality of
cache tags stored in the cache. Each cache tag is linked to a
cache data including the location of a respective failure bit,
and at least one respective failure bit is the failure prone bit.
A status of a block including the page is set to failed when
the page address is not matched to any one of the plurality
of cache tags stored in the cache. A respective valid bit of a
cache tag is verified as true in response to matching the page
address to one of the plurality of cache tags. The status of the
block including the page is set to failed when the respective
valid bit is false. A lock bit is set to true if the correctable
number of failed bits is greater than or equal to the inherent
number of failed bits after executing the ECC with the state
of the failure prone bit changed to the new state. The status
of'a block including the page is set to failed if the correctable
number of failed bits is less than the inherent number of
failed bits after executing the ECC with the state of the
failure prone bit changed to the new state. The respective
valid bit of the one of the plurality of cache tags matching
the page address is set to false in response to the status of the
block being set to failed.

In another embodiment, a method for determining a
failure prone bit in a memory comprises storing in a storage
unit at least one location of a respective failed bit of a
plurality of bits in a page, and for each location, a page
access count, a location error count and a failed bit state. The
page access count is incremented for each access to the page.
The location error count is incremented for each occurrence
of the respective failed bit being corrected by executing an
Error Correction Code (ECC). A location ration is calculated
for each respective failed bit by dividing the location error
count by the page access count. The failure prone bit is
determined as being the respective failed bit with the highest
location ratio.

Alternative embodiments of the method for determining a
failure prone bit comprise setting a respective valid bit to a
true value in response to storing each location, and further
determining the failure prone bit with the respective valid bit
being true. A lock bit for a respective failed bit is set to a true
value in response to changing the state of the respective
failed bit, and correcting a remainder of the failed bits by
executing the ECC. Storing in a storage unit comprises
storing in a cache. A location having the lowest location ratio
of the at least one location is replaced with a replacement
location.

In another embodiment, a system for repairing memory
errors comprises a memory having a plurality of blocks.
Each block has a plurality of pages including at least one
failed bit. A cache is configured to store a location of a failed
bit from the at least one failed bit and at least one accumu-
lated value associated with the location of the failed bit. An
Error Correction Code (ECC) calculator block is configured
to repair the failed bit located at the location.

US 9,477,548 B2

7

Alternative embodiments of the system for repairing
memory errors are realized wherein the cache comprises a
one or more cache sets. Each cache set is selectable by a
cache index including a respective block address of the
block comprising the page having the location of the failed
bit. Each cache set comprises at least one cache tag and a
respective cache data. Each cache tag comprises a respective
page address of the page in the block addressed by the
respective block address. Each cache data comprises the
location of the failed bit, the page access count and the
location error count. The cache is a two way set associative
cache wherein the cache data is a first cache data and the
cache includes a second cache data. The at least one accu-
mulated value includes a page access count and a location
error count. The page access count is incremented for each
access to the page including the location. The location error
count is incremented for each repair of the failed bit stored
at the location. The memory is a NAND FLASH memory.

Although the invention is described herein with reference
to specific embodiments, various modifications and changes
can be made without departing from the scope of the present
invention as set forth in the claims below. Accordingly, the
specification and figures are to be regarded in an illustrative
rather than a restrictive sense, and all such modifications are
intended to be included within the scope of the present
invention. Any benefits, advantages, or solutions to prob-
lems that are described herein with regard to specific
embodiments are not intended to be construed as a critical,
required, or essential feature or element of any or all the
claims.

Unless stated otherwise, terms such as “first” and “sec-
ond” are used to arbitrarily distinguish between the elements
such terms describe. Thus, these terms are not necessarily
intended to indicate temporal or other prioritization of such
elements.

What is claimed is:

1. A method for repairing a memory comprising:

executing an Error Correction Code (ECC) for a page of
the memory, the page comprising a plurality of bits
having an inherent number of failed bits equal to or
greater than zero, the ECC configured to correct a
correctable number of failed bits from the plurality of
bits;

determining from a cache, a location of a failure prone bit
in the page, in response to the correctable number of
failed bits being less than the inherent number of failed
bits wherein said determining comprises matching a
page address to one of a plurality of cache tags stored
in the cache, each cache tag linked to a cache data
including the location of a respective failure bit, at least
one respective failure bit being the failure prone bit;

changing a state of the failure prone bit to a new state, in
response to determining the location of the failure
prone bit;

executing the ECC in response to the state of the failure
prone bit being changed to the new state; and

verifying a respective valid bit of a cache tag is true in
response to matching the page address to one of the
plurality of cache tags.

2. A method for repairing a memory comprising:

executing an Error Correction Code (ECC) for a page of
the memory, the page comprising a plurality of bits
having an inherent number of failed bits equal to or
greater than zero, the ECC configured to correct a
correctable number of failed bits from the plurality of
bits;

5

30

35

40

45

50

55

60

8

determining from a cache, a location of a failure prone bit
in the page, in response to the correctable number of
failed bits being less than the inherent number of failed
bits;

changing a state of the failure prone bit to a new state, in

response to determining the location of the failure
prone bit;

executing the ECC in response to the state of the failure

prone bit being changed to the new state; and
executing the ECC with the failure prone bit not changed to
the new state, substantially in parallel with executing a
second ECC with the failure prone bit changed to the new
state.

3. The method of claim 1 wherein the location of the
failure prone bit is stored in the cache in response to
executing the ECC and the correctable number of failed bits
being greater than or equal to the inherent number of failed
bits.

4. The method of claim 1 wherein a status of a block
including the page is set to failed when the page address is
not matched to any one of the plurality of cache tags stored
in the cache.

5. The method of claim 1 wherein the status of the block
including the page is set to failed when the respective valid
bit is false.

6. The method of claim 1 wherein a lock bit is set to true
if the correctable number of failed bits is greater than or
equal to the inherent number of failed bits after executing the
ECC with the state of the failure prone bit changed to the
new state.

7. The method of claim 1 wherein the status of a block
including the page is set to failed if the correctable number
of failed bits is less than the inherent number of failed bits
after executing the ECC with the state of the failure prone bit
changed to the new state.

8. A method for determining a failure prone bit in a
memory comprising:

storing in a storage unit at least one location of a respec-

tive failed bit of a plurality of bits in a page, and for
each location, a page access count, a location error
count and a failed bit state;

incrementing the page access count for each access to the

page;

incrementing the location error count for each occurrence

of the respective failed bit being corrected by executing
an Error Correction Code (ECC);

calculating a location ratio for each respective failed bit

by dividing the location error count by the page access
count; and

determining the failure prone bit being the respective

failed bit with the highest location ratio.

9. The method of claim 8 further comprising setting a
respective valid bit to a true value in response to storing each
location, and further determining the failure prone bit with
the respective valid bit being true.

10. The method of claim 8 further comprising setting a
lock bit for a respective failed bit to a true value in response
to changing the state of the respective failed bit, and
correcting a remainder of the failed bits by executing the
ECC.

11. The method of claim 8 wherein storing in a storage
unit comprises storing in a cache.

12. The method of claim 11 further comprising replacing
a location having the lowest location ratio of the at least one
location with a replacement location.

US 9,477,548 B2
9

13. A system for repairing memory errors comprising:
a memory having a plurality of blocks, each block having
a plurality of pages including at least one failed bit;
a cache configured to store a location of a failed bit from
the at least one failed bit and at least one accumulated 5
value associated with the location of the failed bit,
wherein the cache comprises
a one or more cache sets, each cache set selectable by
a cache index including a respective block address of
the block comprising the page having the location of 10
the failed bit, each cache set comprising at least one
cache tag and a respective cache data;

each cache tag comprising a respective page address of
the page in the block addressed by the respective
block address, and 15

each cache data comprising the location of the failed
bit, a page access count, and a location error count;
and

an Error Correction Code (ECC) calculator block config-
ured to repair the failed bit located at the location. 20

14. The system of claim 13 wherein the cache is a two
way set associative cache wherein the cache data is a first
cache data and the cache includes a second cache data.

15. The system of claim 13 wherein the at least one
accumulated value includes the page access count and the 25
location error count, the page access count incremented for
each access to the page including the location, and the
location error count incremented for each repair of the failed
bit stored at the location.

16. The system of claim 13 wherein the memory is a 30
NAND FLASH memory.

#* #* #* #* #*

